Prof. Dr. Marius Kloft
-
Marius Kloft is a professor of machine learning and deep learning at TU Kaiserslautern. He is an expert on unsupervised deep learning (particularly anomaly detection and deep generative models), multi-label classification, transfer learning, adversarial learning, explainable AI, and integration of heterogeneous data types in machine learning. He received the Google Most Influential Papers Award, the DFG Emmy-Noether Career Award, and the ANDEA Test-of-time Award for the most influential paper in anomaly detection in the last ten years (2012-2022). His award-winning paper 'Deep One-class Classification' was the first paper published at a top-tier machine-learning venue that uses deep learning for anomaly detection, a field now known as deep anomaly detection. Marius Kloft is spokesperson of the DFG Research Group FOR 5359 'Deep learning on sparse chemical process data'.
Contact
-
Prof. Dr. Marius Kloft
University of Kaiserslautern-Landau
Department of Computer Science
Machine Learning Group
Building 36, Room 325
Paul-Ehrlich-Straße 36
67663 Kaiserslautern
0631 205 2635, 0631 205 3286
ml@cs.uni-kl.de
Prof. Dr. Marius Kloft
kloft@cs.uni-kl.de
0631 205 2800
Publications
Basic Research
Marius Kloft and group are interested in theory and algorithms of statistical machine learning (especially deep learning) and its applications. Their research covers a broad range of topics and applications, unifying theoretically proven approaches (e.g., based on learning theory) with recent advances (e.g., in deep learning or reinforcement learning). Topics they have been working on include unsupervised deep learning (particularly, anomaly detection), multi-modal learning, extreme classification, adversarial learning, explainable AI, and applications of ML in the life sciences, mechanical and chemical process engineering, and text analysis. Kloft has been serving as associate editor for journals (JMLR, TPAMI, TNNLS) and area chairs of conferences (AAAI, AISTATS, ECML, and ICLR). Marius Kloft is spokesperson of the DFG FOR 5359 and co-organizer of the SPPs 2331 and 2364.
Application related Research
Marius Kloft has been working on applications of machine learning and deep learning in computer vision, natural language processing, computer security, plant research and agriculture, biomedical applications, mechanical engineering, and chemical process engineering. He co-developed the REMIND intrusion detection system and the CLEF 2012 Photo Annotation Challenge-winning image categorization system. As a former postdoc at Sloan-Kettering Cancer Center in New York, he is experienced in applications in the biomedical domain and oncology (e.g., analysis of histopathological, CT, and NMR data using deep learning and GWAS). Since joining TU Kaiserslautern in 2017, he has become increasingly engaged in mechanical and chemical engineering applications. For instance, he is the spokesperson of the DFG research group FOR 5359 ("Deep learning on sparse chemical process data"), the Carl-Zeiss project "Process Engineering 4.0", and he is a co-organizer of the DFG SPPs 2331 and 2364 at the interface of machine learning and chemical engineering. He has been serving as PhD advisor of students at BASF and Bosch AI.
Activities as Editor
- Associate Editor, IEEE Transactions on Pattern Recognition and Machine Intelligence (Core A*; Impact Factor: 24.3), since 2023
- Associate Editor, IEEE Transactions on Neural Networks and Learning Systems (Core A*; Impact Factor: 14.3), 2020-2022
- Senior Area Chair, International Conference on Artificial Intelligence and Statistics (Core A), 2024
- Senior Area Chair, AAAI Conference on Artificial Intelligence (Core A*), 2020
- Area Chair, International Conference on Learning Representations (ICLR), 2025
- Area Chair, International Conference on Artificial Intelligence and Statistics (Core A), 2020–2022 and 2025
- Area Chair, AAAI Conference on Artificial Intelligence (Core A*), 2021 und 2022
- Area Chair, European Conference on Machine Learning (Core A), 2019, 2021, and 2022
- Workshop Selection Committee Member, NeurIPS (Core A*), 2020
Activities as a Reviewer
- Editorial Board Member, Transactions on Machine Learning Research, since 2022
- Editorial Board Member, Machine Learning Journal (Core A), 2020
- Program committee membership or reviewer for >30 journals and >50 scientific conference
- Regular reviewer for DFG proposals (including in-kind grants and research groups) for multiple committees (computer science, mathematics, manufacturing, process engineering)
- Regular reviewer for DAAD applications (scholarships)
- Reviewer for ERC Consolidator Grants
Existing Memberships
- IEEE, Senior Member
- GI, Member
Received Awards, Prizes, Honors
- Google Most Influential Papers Award (2013)
- DFG Emmy-Noether Career Award (2014)
- ANDEA Test-of-time Award (2022)
Special Expertise
Basic Research
- Machine Learning (ML): Representation Learning, Zero-Shot/One-Shot/Few-Shot Learning, Self-Supervised Learning, Adversarial Learning, Reinforcement Learning (RL), Unsupervised Learning, Anomaly Detection, Density Estimation, Feature Engineering/Feature Extraction
- Robotics: Sensory Acquisition and Perception
- Technology Analysis: Economic Effects, Human-AI Interaction
Application related Research
AI News
Steffen Reithermann from the Chair of Machine Learning on the features, potential and risks of the Chinese AI model DeepSeek in a radio interview on SWR Aktuell (30.01.2025)
Prof. Dr. Marius Kloft coordinates new BMBF third-party funded project PIAD - Physics-informed Anomaly Detection with total funding of around € 2 million (30.01.2025)
Research initiative “Machine Learning Kaiserslautern-Landau” (MLKL) of the RPTU Kaiserslautern-Landau (20.11.2024)
Consulting support for the AI rollout in companies and organizations (05.10.2024)
Opinions from research, business and society on the topic of AI: a snapshot in Rhineland-Palatinate (31.10.2023)
KI lecture series in city libraries of the region for the interested public (16.08.2023)
Prof. Marius Kloft and colleagues receive the ANDEA Test-of-Time Award for the most influential paper in anomaly detection in the last ten years (09.02.2023)
Deep Learning Despite Sparse Data: DFG Research Group takes a look at chemical process data evaluation (29.09.2022)
AI Events
05.03.2025: Kick-off Meeting & Workshop des BMBF-Projekts PIAD an der RPTU in Kaiserslautern
11.12.2024: Chancen und Herausforderungen der KI-Einführung in Unternehmen - Gemeinsame Veranstaltung des Lehrstuhls Maschinelles Lernen der RPTU Kaiserslautern-Landau, der KI-Allianz Rheinland-Pfalz und der IHK Pfalz
09.10.2024: Internationaler Workshop „Machine Learning in Chemical Process Engineering“ der DFG-Forschungsgruppe FOR 5359 am ITWM Kaiserslautern
07.10.2024 - 08.10.2024: 2. Doktoranden-Workshop der DFG-Forschungsgruppe FOR 5359 an der RPTU in Kaiserslautern
18.09.2024: Lehrerfortbildung "Vermittlung grundlegender Funktionsweisen von Computern und KI an Grundschulkinder" der Stiftung Pfalzmetall unterstützt von der Arbeitsgruppe Maschinelles Lernen Prof. Kloft & Jun.-Prof. Fellenz
04.09.2024: Gemeinsamer Vortrag "Beratende Begleitung eines KI-Rollouts in KMU & Beispiele praxisnaher Projekterfahrungen” von Prof. Dr. Marius Kloft und Steffen Reithermann (RPTU Kaiserslautern) beim Plattformtreffen der SIAK-Plattform KI bei der WIPOTEC GmbH in Kaiserslautern
18.06.2024: Vortrag "Möglichkeiten der KI und deren Auswirkungen auf die Arbeitswelt” von Steffen Reithermann / Arbeitsgruppe Maschinelles Lernen (Prof. Dr. Marius Kloft) bei der SIAK-Veranstaltung "Arbeitswelt der Zukunft gemeinsam gestalten" (ESF) in Kaiserslautern
07.06.2024 - 08.06.2024: Lehrerfortbildung "Tage der Informatik" der Stiftung Pfalzmetall unterstützt von der Arbeitsgruppe Maschinelles Lernen Prof. Kloft & Jun.-Prof. Fellenz
28.05.2024: Vortrag "Künstliche Intelligenz (KI) - die weltbewegende Zukunftstechnologie" von Prof. Dr. Marius Kloft für die interessierte Öffentlichkeit in Niederelbert
23.05.2024 - 24.05.2024: 2nd Overall Project Meeting DFG FOR 5359 at Schloss Dagstuhl
21.05.2024: ML-Talk am 21.05.2024: Stephan Mandt (University of California, Irvine), "From Entropy to Artistry: on Thermodynamics and Generative AI"
23.04.2024: Vortrag "Möglichkeiten der KI und deren Auswirkungen auf die Arbeitswelt” von Prof. Dr. Marius Kloft bei der SIAK-Veranstaltung "Arbeitswelt der Zukunft gemeinsam gestalten" (ESF) in Landau
20.03.2024: KI-Kongress Rheinland-Pfalz an der RPTU in Kaiserslautern am 20.03.2024 - Arbeitsgruppe Maschinelles Lernen von Prof. Dr. Marius Kloft als Ko-Organisator und Fachbereich Informatik mit weiteren Vortragenden vertreten
06.02.2024: Gemeinsamer Vortrag "Möglichkeiten der KI und deren Auswirkungen auf die Arbeitswelt” von Prof. Dr. Marius Kloft und Steffen Reithermann bei der SIAK-Veranstaltung "Arbeitswelt der Zukunft gemeinsam gestalten" (ESF) in Pirmasens
23.11.2023: AI Activator Lab der SIAK-Plattform Künstliche Intelligenz mit der Arbeitsgruppe Maschinelles Lernen von Prof. Dr. Marius Kloft als Mitorganisator
13.11.2023 - 15.11.2023: Doktoranden-Workshop der DFG-Forschungsgruppe FOR 5359 im Jugendstilhotel Trifels in Annweiler
30.10.2023: Prof. Dr. Marius Kloft als Thementisch-Leiter beim Vernetzungsworkshop "KI trifft Biotechnologie – wo Wissenschaft und Unternehmen Zukunft gemeinsam gestalten" der WissKomm Academy und des Ministeriums für Wissenschaft und Gesundheit (MWG) des Landes Rheinland-Pfalz
24.10.2023: Arbeitsgruppe Maschinelles Lernen von Prof. Dr. Marius Kloft vertreten beim "Trinationalen Arbeitstreffen zum Thema Künstliche Intelligenz, Innovation und Forschung" am Sitz der Region Grand Est in Straßburg
14.09.2023: Kolloquium zur Masterarbeit Eine Analyse der Forschungsschwerpunkte in der Wissenschaft, der Nachfrage durch die Wirtschaft und der Einstellungen in der Gesellschaft zum Themenkomplex KI in Rheinland-Pfalz: Implikationen, Spannungsfelder und Ansatzpunkte für Interventionen
05.07.2023: Impulsvortrag von Prof. Dr. Marius Kloft zum Thema Künstliche Intelligenz (KI) bei der Veranstaltung "Wissenschaft für Dich" des Arbeitskreises Wissenschaft der SPD-Landtagsfraktion im Landtag Rheinland-Pfalz
04.05.2023 - 05.05.2023: Kick-off Meeting DFG FOR 5359 at Schloss Dagstuhl
29.11.2022: Vortrag "Erkennung von Abweichungen jeglicher Art (Anomalieerkennung)" bei Veranstaltung der KI-Allianz Rheinland-Pfalz in Ludwigshafen
AI Research Projects
PIAD: Physics-informed anomaly detection
Duration: 01.11.2024 - 31.10.2027, Funding Organization: BMBF- AICare: Artificial Intelligence for treating cancer therapy resistance
Duration: 01.04.2024 - 31.03.2030, Funding Organization: Carl-Zeiss-Stiftung - Hypo: Multifunctional high-performance components made from hybrid porous materials
Duration: 01.04.2024 - 31.03.2028, Funding Organization: DFG FOR 5359: DFG Research Group KI-FOR FOR 5359: Deep Learning on sparse chemical process data
Duration: 01.11.2022 - 31.10.2026, Funding Organization: DFG
- DDG: Data-dependency gap: a new problem in the learning theory of CNNs
Duration: 17.06.2021 - 16.06.2024, Funding Organization: DFG - VorPlanML: Support for operation sequence determination in work scheduling through machine learning
Duration: 01.05.2021 - 30.04.2023, Funding Organization: BMBF KEEN: AI incubator labs in the process industry; sub-project: Hybrid material data models for process engineering and machine learning from process data
Duration: 01.04.2020 - 31.03.2023, Funding Organization: BMWiAVATARS: Advanced Virtuality and Augmented Reality Approaches in Seeds to Seeds
Duration: 01.06.2019 - 30.09.2024, Funding Organization: BMBFDeepIntegrate: Integrating heterogeneous data sources in deep learning: architectures, algorithms and applications in plant breeding
Duration: 01.01.2019 - 31.12.2021, Funding Organization: BMBF- BreedPatH: Breeding value pattern recognition in hybrid crop species
Duration: 01.09.2016 - 31.01.2020, Funding Organization: BMBF - Statistisches Lernen aus abhängigen Daten: Lerntheorie, Robuste Algorithmen und Anwendungen: Statistical learning from dependent data: Learning Theory, Robust Algorithms, and Applications
Duration: 01.01.2015 - 31.12.2023, Funding Organization: DFG