Machine Learning Group, Department of Computer Science (DCS)
The Machine Learning Group at RPTU (then: TU Kaiserslautern) was established in 2017. The group currently comprises 2 professors, 1 postdocs, 18 PhD students, 3 administrative / technical support staff and 13 student assistants. The group is interested in theory and algorithms of statistical machine learning (especially deep learning) and its applications. Our research covers a broad range of topics and applications, where we try to unify theoretically proven approaches (e.g., based on learning theory) with recent advances (e.g., in deep learning or reinforcement learning). Topics we have been working on include unsupervised deep learning (particularly, anomaly detection), multi-modal learning, extreme classification, adversarial learning, explainable AI, and applications of ML in the life sciences, mechanical and chemical process engineering, and text analysis. Members of the group have received various awards, including the Google Most Influential Papers Award, the ICML and NIPS Best Reviewer Awards, the ANDEA Test-of-time Award, and the Emmy-Noether Career Award (DFG). The group contributes the community with helpful service. Members of the group have been reviewing for more than 50 conferences and 30 journals. They have been serving as associate editors for journals (JMLR, TNNLS) and area chairs of conferences (AAAI, AISTATS, and ECML). The group is committed to improving the diversity, equity, and inclusion in the field of ML. This is evidenced by the high percentage of women in the group, on all levels of academic qualification.
Address
University of Kaiserslautern-Landau
Department of Computer Science
Machine Learning Group
Building 36, Room 325
Paul-Ehrlich-Straße 36
67663 Kaiserslautern
0631 205 2635, 0631 205 3286
ml@cs.uni-kl.de
https://ml.informatik.uni-kl.de/
Leading Researchers
Special Expertise
Basic Research
- Machine Learning (ML): Representation Learning, Zero-Shot/One-Shot/Few-Shot Learning, Self-Supervised Learning, Adversarial Learning, Unsupervised Learning, Anomaly Detection, Density Estimation, Feature Engineering/Feature Extraction
- Robotics: Sensory Acquisition and Perception
- Technology Analysis: Economic Effects
Application related Research
AI News
Opinions from research, business and society on the topic of AI: a snapshot in Rhineland-Palatinate (31.10.2023)
KI lecture series in city libraries of the region for the interested public (16.08.2023)
Prof. Marius Kloft and colleagues receive the ANDEA Test-of-Time Award for the most influential paper in anomaly detection in the last ten years (09.02.2023)
Deep Learning Despite Sparse Data: DFG Research Group takes a look at chemical process data evaluation (29.09.2022)
AI Events
23.11.2023: AI Activator Lab der SIAK-Plattform Künstliche Intelligenz mit der Arbeitsgruppe Maschinelles Lernen von Prof. Dr. Marius Kloft als Mitorganisator
13.11.2023 - 15.11.2023: Doktoranden-Workshop der DFG-Forschungsgruppe FOR 5359 im Jugendstilhotel Trifels in Annweiler
30.10.2023: Prof. Dr. Marius Kloft als Thementisch-Leiter beim Vernetzungsworkshop "KI trifft Biotechnologie – wo Wissenschaft und Unternehmen Zukunft gemeinsam gestalten" der WissKomm Academy und des Ministeriums für Wissenschaft und Gesundheit (MWG) des Landes Rheinland-Pfalz
24.10.2023: Arbeitsgruppe Maschinelles Lernen von Prof. Dr. Marius Kloft vertreten beim "Trinationalen Arbeitstreffen zum Thema Künstliche Intelligenz, Innovation und Forschung" am Sitz der Region Grand Est in Straßburg
14.09.2023: Kolloquium zur Masterarbeit Eine Analyse der Forschungsschwerpunkte in der Wissenschaft, der Nachfrage durch die Wirtschaft und der Einstellungen in der Gesellschaft zum Themenkomplex KI in Rheinland-Pfalz: Implikationen, Spannungsfelder und Ansatzpunkte für Interventionen
05.07.2023: Impulsvortrag von Prof. Dr. Marius Kloft zum Thema Künstliche Intelligenz (KI) bei der Veranstaltung "Wissenschaft für Dich" des Arbeitskreises Wissenschaft der SPD-Landtagsfraktion im Landtag Rheinland-Pfalz
29.11.2022: Vortrag "Erkennung von Abweichungen jeglicher Art (Anomalieerkennung)" bei Veranstaltung der KI-Allianz Rheinland-Pfalz in Ludwigshafen
AI Research Projects
FOR 5359: DFG Research Group KI-FOR FOR 5359: Deep Learning on sparse chemical process data
Duration: 01.11.2022 - 31.10.2026, Funding Organization: DFG- DDG: Data-dependency gap: a new problem in the learning theory of CNNs
Duration: 17.06.2021 - 16.06.2024, Funding Organization: DFG AVATARS: Advanced Virtuality and Augmented Reality Approaches in Seeds to Seeds
Duration: 01.06.2019 - 30.09.2024, Funding Organization: BMBF- Statistisches Lernen aus abhängigen Daten: Lerntheorie, Robuste Algorithmen und Anwendungen: Statistical learning from dependent data: Learning Theory, Robust Algorithms, and Applications
Duration: 01.01.2015 - 31.12.2023, Funding Organization: DFG
- VorPlanML: Support for operation sequence determination in work scheduling through machine learning
Duration: 01.05.2021 - 30.04.2023, Funding Organization: BMBF KEEN: AI incubator labs in the process industry; sub-project: Hybrid material data models for process engineering and machine learning from process data
Duration: 01.04.2020 - 31.03.2023, Funding Organization: BMWi